- Introduction to Python
Introduction
- 1 - Installing Python
- 2 - Numbers
- 3 - Strings
- 4 - Slicing up Strings
- 5 - Lists
- 6 - Installing PyCharm
-
- Conditional Statements
- 7 - if elif else
-
- Iterations
- 8 - for
- 9 - Range and While
- 10 - Comments and Break
- 11 - Continue
-
- Functions
- 12 - Functions
- 13 - Return Values
- 14 - Default Values for Arguments
- 15 - Variable Scope
- 16 - Keyword Arguments
- 17 - Flexible Number of Arguments
- 18 - Unpacking Arguments
- 19 - My trip to Walmart and Sets
- 20 - Dictionary
- 21 - Modules
-
- Playing with Requests and Files
- 22 - Download an Image from the Web
- 23 - How to Read and Write Files
- 24 - Downloading Files from the Web
-
- Exceptions
- 28 - Exceptions
-
- Object Oriented Programs
- 29 - Classes and Objects
- 30 - init
- 31 - Class vs Instance Variables
- 32 - Inheritance
- 33 - Multiple Inheritance
- 34 - threading
-
- Playing around with Python
- 35 - Unpack List or Tuples
- 36 - Zip (and yeast infection story)
- 37 - Lamdba
- 38 - Min, Max, and Sorting Dictionaries
- 39 - Pillow
- 40 - Cropping Images
- 41 - Combine Images Together
- 42 - Getting Individual Channels
- 43 - Awesome Merge Effect
- 44 - Basic Transformations
- 45 - Modes and Filters
- 46 - struct
- 47 - map
- 48 - Bitwise Operators
- 49 - Finding Largest or Smallest Items
- 50 - Dictionary Calculations
- 51 - Finding Most Frequent Items
- 52 - Dictionary Multiple Key Sort
- 53 - Sorting Custom Objects
-
- Add Ons:
-
- 54 - Database Connectivity and Querying for MySQL
- 55 - Quick look into Regular Expressions
- 56 - Playing around with REST API
-
- Writing a Web Crawler
-
- Natural Language Processing and NLTK
Introduction to NLP (examples in Python of course)
- Simple Text Manipulation
- Searching Text
- Counting Words
- Splitting Texts into Words
- Lexical dispersion
- Processing complex structures
- Representing text in Lists
- Indexing Lists
- Collocations
- Bigrams
- Frequency Distributions
- Conditionals with Words
- Comparing Words (startswith, endswith, islower, isalpha, etc...)
- Natural Language Understanding
- Word Sense Disambiguation
- Pronoun Resolution
- Machine translations (statistical, rule based, literal, etc...)
- Exercises
- NLP in Python in examples
- Accessing Text Corpora and Lexical Resources
- Common sources for corpora
- Conditional Frequency Distributions
- Counting Words by Genre
- Creating own corpus
- Pronouncing Dictionary
- Shoebox and Toolbox Lexicons
- Senses and Synonyms
- Hierarchies
- Lexical Relations: Meronyms, Holonyms
- Semantic Similarity
- Processing Raw Text
- Priting
- struncating
- extracting parts of string
- accessing individual charaters
- searching, replacing, spliting, joining, indexing, etc...
- using regular expressions
- detecting word patterns
- stemming
- tokenization
- normalization of text
- Word Segmentation (especially in Chinese)
- Categorizing and Tagging Words
- Tagged Corpora
- Tagged Tokens
- Part-of-Speech Tagset
- Python Dictionaries
- Words to Propertieis mapping
- Automatic Tagging
- Determining the Category of a Word (Morphological, Syntactic, Semantic)
- Text Classification (Machine Learning)
- Supervised Classification
- Sentence Segmentation
- Cross Validation
- Decision Trees
- Extracting Information from Text
- Chunking
- Chinking
- Tags vs Trees
- Analyzing Sentence Structure
- Context Free Grammar
- Parsers
- Building Feature Based Grammars
- Grammatical Features
- Processing Feature Structures
- Analyzing the Meaning of Sentences
- Semantics and Logic
- Propositional Logic
- First-Order Logic
- Discourse Semantics
- Managing Linguistic Data
- Data Formats (Lexicon vs Text)
- Metadata
|