班級(jí)規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號(hào)) |
每個(gè)班級(jí)的人數(shù)限3到5人,互動(dòng)授課, 保障效果,小班授課。 |
上間和地點(diǎn) |
上部份地點(diǎn):【上海】同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站)【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站)/深圳大學(xué)成教院【北京分部】:北京中山學(xué)院/福鑫大樓【南京分部】:金港大廈(和燕路)【武漢分部】:佳源大廈(高新二路)【成都分部】:領(lǐng)館區(qū)1號(hào)(中和大道)【沈陽(yáng)分部】:沈陽(yáng)理工大學(xué)/六宅臻品【鄭州分部】:鄭州大學(xué)/錦華大廈【石家莊分部】:河北科技大學(xué)/瑞景大廈 最近開間(周末班/連續(xù)班/晚班):2019年1月26日.... |
實(shí)驗(yàn)設(shè)備 |
◆小班教學(xué),教學(xué)效果好 ☆注重質(zhì)量☆邊講邊練 ☆合格學(xué)員免費(fèi)推薦工作 ★實(shí)驗(yàn)設(shè)備請(qǐng)點(diǎn)擊這兒查看★ |
質(zhì)量保障 |
1、培訓(xùn)過(guò)程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽; 2、免費(fèi)提供課后技術(shù)支持,保障培訓(xùn)效果。 3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。☆合格學(xué)員免費(fèi)頒發(fā)相關(guān)工程師等資格證書,提升職業(yè)資質(zhì)。專注高端技術(shù)培訓(xùn)15年,端海學(xué)員的能力得到大家的認(rèn)同,受到用人單位的廣泛贊譽(yù),端海的證書受到廣泛認(rèn)可。 |
部份程大綱 |
|
- 目標(biāo)收益
通過(guò)該課程學(xué)習(xí),洞悉Hadoop,NoSQL與Spark等技術(shù)的原理、架構(gòu)與技術(shù)手段;結(jié)合豐富實(shí)例掌握其設(shè)計(jì)與開發(fā)方法,以及掌握如軟件架構(gòu)、性能調(diào)優(yōu)等使用過(guò)程中的實(shí)用技巧;深入了解Hadoop,NoSQL,Spark體系中各成員,理解Hadoop,NoSQL,Spark成員各自的優(yōu)、缺點(diǎn)與正確適用場(chǎng)景,了解技術(shù)最新發(fā)展動(dòng)向,能對(duì)Hadoop,NoSQL與Spark體系在學(xué)員企業(yè)、學(xué)員項(xiàng)目、學(xué)員研發(fā)中是否可用、如何定位以及如何使用做出正確判斷與學(xué)習(xí),并且對(duì)如何結(jié)合大數(shù)據(jù)技術(shù)規(guī)劃企業(yè)數(shù)據(jù)架構(gòu)得到相當(dāng)?shù)膯l(fā)與收獲。
- 培訓(xùn)對(duì)象
- 企業(yè)中高層技術(shù)管理人員、企業(yè)技術(shù)戰(zhàn)略決策者、軟件架構(gòu)師、軟件研發(fā)人員與大數(shù)據(jù)技術(shù)愛(ài)好者,有大數(shù)據(jù)及海量數(shù)據(jù)管理與處理需求的企業(yè)優(yōu)先。
- 學(xué)員基礎(chǔ)
- 企業(yè)數(shù)據(jù)架構(gòu)基礎(chǔ)知識(shí);數(shù)據(jù)管理基礎(chǔ)知識(shí);關(guān)系數(shù)據(jù)庫(kù)的操作與實(shí)踐;大數(shù)據(jù)概念了解。
- 課程大綱
- 主題 內(nèi)容
大數(shù)據(jù)時(shí)代關(guān)系數(shù)據(jù)庫(kù)的挑戰(zhàn)與應(yīng)對(duì)
- 1. 現(xiàn)代數(shù)據(jù)管理技術(shù)綜述
2. 關(guān)系數(shù)據(jù)庫(kù)技術(shù)的核心特征
3.主流關(guān)系數(shù)據(jù)庫(kù)的挑戰(zhàn)
4. 改進(jìn)型關(guān)系數(shù)據(jù)庫(kù)
- 大數(shù)據(jù)技術(shù)綜述
- 1. 大數(shù)據(jù)概念澄清
2. 大數(shù)據(jù)技術(shù)家族
3. NoSQL技術(shù)綜述
3.1最早的NoSQL---BDB
3.2 Hadoop之Hbase與Facebook之Cassandra
3.3 MongoDB與CouchDB
3.4Memcached與Redis
3.5圖形數(shù)據(jù)庫(kù)Neo4j
4. MapReduce
5.關(guān)系數(shù)據(jù)庫(kù)聯(lián)邦
6.海量分布式文件系統(tǒng)
7大數(shù)據(jù)技術(shù)理論基礎(chǔ)
CAP,BASE,ACID
- Hadoop實(shí)用教程
- 1. Hadoop技術(shù)概論
1.1 Hadoop體系架構(gòu)總論
1.2 HDFS-工作原理與架構(gòu)
1.3 平民化的分布式計(jì)算MapReduce
1.4 MapReduce工作原理與架構(gòu)
1.5 Hadoop數(shù)據(jù)倉(cāng)庫(kù)-Hive
1.6 Hadoop NoSQL數(shù)據(jù)庫(kù)-HBase
1.7 工作流調(diào)度-Ooize
1.8 分布式協(xié)調(diào)系統(tǒng)--Zookeeper
2. Hadoop部署
2.1 Hadoop版本介紹與選擇
2.2 Hadoop部署實(shí)踐
2.3 Hadoop安裝文件構(gòu)成與配置體系
2.4 機(jī)器硬件建議配置
2.5 系統(tǒng)環(huán)境配置
2.6 基本參數(shù)配置與說(shuō)明
2.7 進(jìn)程分布規(guī)劃與啟動(dòng)
3. 分布式文件系統(tǒng)HDFS實(shí)用教程
3.1 HDFS操作
3.2 HDFS編程—文件讀寫
3.3 HDFS數(shù)據(jù)壓縮
3.4 HDFS技術(shù)要點(diǎn)
4. MapReduce實(shí)用教程
4.1 MapReduce原理與架構(gòu)
4.2 MapReduce編程方法
4.3 MapReduce實(shí)用技術(shù)要點(diǎn)
4.4 MapReduce排序與關(guān)聯(lián)
4.5 MapReduce工作流
4.6 MapReduce調(diào)優(yōu)
5. MapReduce2.0-YARN
5.1 YARN的原理
5.2 YARN設(shè)計(jì)架構(gòu)
5.3 YARN工作流程
5.4 YARN與MapReduce1.0比較
6. MapReduce實(shí)例講解
6.1普通實(shí)例
6.2 高級(jí)實(shí)例
6.3 MapReduce高級(jí)數(shù)據(jù)分析(時(shí)間允許時(shí))
7. Hadoop數(shù)據(jù)倉(cāng)庫(kù)Hive
7.1 Hive編程
7.2 Hive環(huán)境部署與搭建
7.3 Hive工作機(jī)制
7.4 Hive語(yǔ)法與實(shí)踐
8. 其它ZooKeeper,Sqoop,Chukwa,Avro……
- Hadoop技術(shù)分析
- 1. Hadoop MapReduce技術(shù)解析
6.1關(guān)于效率
6.2關(guān)于擴(kuò)展性
6.3關(guān)于可靠性與可用性
6.4關(guān)于與關(guān)系數(shù)據(jù)庫(kù)
6.5關(guān)于適用的數(shù)據(jù)類型
6.6關(guān)于數(shù)據(jù)存儲(chǔ)與管理
2. Hadoop與關(guān)系數(shù)據(jù)庫(kù)
2.1 MapReduce與關(guān)系數(shù)據(jù)庫(kù)
2.2 Hive與MPP關(guān)系數(shù)據(jù)庫(kù)
- NoSQL實(shí)用教程
- 1.NoSQL理論基礎(chǔ)---CAP與BASE深入分析
2.NoSQL實(shí)用教程
2.1 HBase實(shí)用教程
2.1.1 HBase原理
2.1.2 HBase實(shí)用安裝部署要點(diǎn)
2.1.3 HBase數(shù)據(jù)模型
2.1.4 HBase索引與關(guān)聯(lián)的實(shí)現(xiàn)
2.1.5 HBase使用
2.1.6HBase性能調(diào)優(yōu)
2.1.7 HBase高級(jí)設(shè)計(jì)教程---如何真正用好HBase
2.1.8 HBase與關(guān)系數(shù)據(jù)庫(kù)結(jié)合
3. NoSQL設(shè)計(jì)實(shí)例
3.1 HBase實(shí)現(xiàn)全屬性查詢
3.2 HBase實(shí)現(xiàn)時(shí)間序列數(shù)據(jù)管理
3.3 HBase與MapReduce結(jié)合示例
4. Facebook Cassandra介紹
5.MongoDB介紹
6.圖數(shù)據(jù)庫(kù)Neo4J介紹
- NoSQL技術(shù)分析
- 1. NoSQL技術(shù)手段總結(jié)
1.1 水平分割
1.2 數(shù)據(jù)副本與讀寫一致性
1.3 In-Memory架構(gòu)
1.4 MVCC
1.5列存儲(chǔ)
1.6 COW
2. NoSQL技術(shù)解析
2.1 關(guān)于水平擴(kuò)展性
2.2關(guān)于模式自由
3. NoSQL與關(guān)系數(shù)據(jù)庫(kù)
3.1 理論原則分析
3.2 邏輯模型分析
3.3 物理模型分析
3.4 索引、事務(wù)與關(guān)聯(lián)
3.5 使用場(chǎng)景定位
3.6 企業(yè)數(shù)據(jù)體系定位
- Spark教程
- 1. Spark組成與體系架構(gòu)
2. Spark原理
3. Spark與Hadoop
4. Scala簡(jiǎn)介
5. Spark技術(shù)流程
- 超越Hadoop
- 1. Hadoop技術(shù)體系的不足與尷尬
2. 新技術(shù)介紹
3. 互聯(lián)網(wǎng)技術(shù)體系介紹
4. 數(shù)據(jù)管理技術(shù)發(fā)展趨勢(shì)分析
- 大數(shù)據(jù)技術(shù)實(shí)踐分享
- 1. 海量數(shù)據(jù)處理架構(gòu)設(shè)計(jì)
2. 大數(shù)據(jù)驅(qū)動(dòng)與企業(yè)業(yè)務(wù)/運(yùn)營(yíng)
3. 實(shí)踐中的企業(yè)大數(shù)據(jù)分析技術(shù)流程
3.1采集---各種方法的比較
3.2存儲(chǔ)---原始數(shù)據(jù)與業(yè)務(wù)數(shù)據(jù)提取
3.3模型---Web分析指標(biāo)體系
3.4分析---大數(shù)據(jù)分析方法
3.5 行動(dòng)---個(gè)性化推薦
4. 大數(shù)據(jù)與企業(yè)交易
5. 大數(shù)據(jù)與企業(yè)交互
5. 自已設(shè)計(jì)大數(shù)據(jù)技術(shù)體系
- 大數(shù)據(jù)與企業(yè)新一代數(shù)據(jù)體系建設(shè)
- 1.傳統(tǒng)的以關(guān)系數(shù)據(jù)庫(kù)為主的企業(yè)數(shù)據(jù)架構(gòu)
2.大數(shù)據(jù)時(shí)代的新一代企業(yè)數(shù)據(jù)邏輯架構(gòu)
2.1 數(shù)據(jù)分類
2.2 數(shù)據(jù)分布
2.3 數(shù)據(jù)流轉(zhuǎn)
2.4 數(shù)據(jù)集成
2.5 數(shù)據(jù)交換
2.6 數(shù)據(jù)分析
2.7 應(yīng)用展示
3. 新一代企業(yè)數(shù)據(jù)技術(shù)架構(gòu)
3.1邏輯架構(gòu)
3.2技術(shù)方法
3.3物理平臺(tái)
4. 新一代企業(yè)數(shù)據(jù)架構(gòu)中Hadoop/NoSQL與關(guān)系數(shù)據(jù)庫(kù)的相互配合
5. 典型場(chǎng)景示例
|